Tridecamethyl-1-phospha- and tridecamethyl-1-arsa-2,3,4,5,6,7,8-heptasilabicyclo[2.2.2]octane

Karl Hassler ${ }^{\text {a * }}$, Gerlinde M. Kollegger ${ }^{2}$, Harald Siegl ${ }^{2}$, Gerd Klintschar ${ }^{6}$
${ }^{2}$ Institute of Inorganic Chemisry, Graz Universiry of Technology, Srremayrgasse IC, A-8010 Graz Asssria
${ }^{\mathrm{b}}$ Institure of Physical Chemistry, Karl Fruncens University, Heinrichstrasse 28, A-80IO Graz Austria

Received 10 July 199; revised 27 September 1996
Abetract
 metal phosphide or arsenide $\mathrm{Na}_{3} \mathrm{E} / \mathrm{K}_{3} \mathrm{E}$ and the heptasilane $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2} \mathrm{Cl}\right)_{3}$

The cages were isolated by crystallization from heptane and the crystal structure of the arsenic compound was determined. The syethesis of the heptasilane $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2} \mathrm{Cl}\right)_{3}$ is described too. All compounds were characterized by maltinuclear NMR specaroscopy (${ }^{1} \mathrm{H}$, ${ }^{29} \mathrm{Si},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) as well as elemental analysis.

Keywords: Silicon; Phosphorus; Arsenic

1. Introduction

Just a few bicyclo[2.2.2]octanes composed exclusively of second row elements of Group XIV (Si, Ge, Sn, Pb) and/or Group XV (P, As, Sb, Bi) are known at present.

Tetradecamethylbicyclo[2.2.2]octasilane was reported to form in 5% yield in the reaction of Na / K alloy with a mixure of trichloromethylsilane and dichlorodimethylsilane, together with octadecabicyclo[4.4.0]decasilane [1]. The latter rearranges to form a silyl substituted

[^0]bicyclo[22.2]octasilane [2] (Scheme 1). A detriiled and complete review of all cyctic and polycyclic silanes presently known is given in Ref. [3].

When sodium potassium phosphide, arseride, antimonide or bismuthide $\mathrm{Na}_{3} \mathrm{E} / \mathrm{K}_{3} \mathrm{E}$ (prepared fron the elemenss E and Na / K alloy) react with 1,2 -dichlorotetramethyldisilane, the 1,4 diphospha-, diarsa-, distibaand dibismutha-2,3,5,6,7,8-hexasilabicycto (2.2.2 loc tanes are formed [4,51 (Schemse 2). In an analogous manner, $\mathbf{P}\left(\mathrm{SnMe}_{2} \mathrm{SaMc}_{2}\right)_{3} \mathrm{P}$ is formed in the reaction between white phosphorus and 1,1,2,2-tetramethyldistannane [6].

The marked tendency of the heavier elements of Groups XIV and XV to form six-membered ring sys-

$$
=\text { Sime }_{n} \quad n=0,1,2,3
$$

Scheme 1.
tems prompted us to choose the citle compounds as symathetic targets.

2. Syntheses

Starting from methyltri(chlorodimethylsilyl)silane (prepared from $\mathrm{MeSi}\left(\mathrm{SiMe}_{3}\right)_{3}$ and $\mathrm{Me}_{3} \mathrm{SiCl}$ [7]) and
$\mathrm{PhMe}_{2} \mathrm{SiLi}$, we were able to synthesize $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2} \mathrm{Ph}\right)_{3}$ in reasonable yield (50%). The heptasilane was then easily converted to $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2} \mathrm{Cl}_{3}\right.$ using $\mathrm{HCl} / \mathrm{AlCl}_{3}$ or $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H} / \mathrm{LiCl}$ (Scheme 3). The subsequent reactions of the trichloroheptasilane with $\mathrm{Na}_{3} \mathrm{P} / \mathrm{K}_{3} \mathrm{P}$ and $\mathrm{Na}_{3} \mathrm{As} / \mathrm{K}_{3} \mathrm{As}$, carried out in DME, gave the desired

Scheme 2.

Scheme 3.
cages in astonishingly high yields ($\mathbf{4 8 \%}$ and $\mathbf{3 0 \%}$ respectively).

3. Crystal structure of tridecamethyl-1-arsa-2,3,4,5,6,7,8-heptasilabicyclo[2.2.2]octane

Pale yellow single crystals of tridecamethyl-1-arsa-2,3,4,5,6,7,8-heptasilabicyclo[2.2.2]octane suitable for X-ray diffraction analysis were grown in heptane. The data collection was performed under a stream of N_{2} at $-186^{\circ} \mathrm{C}$ using a modified STOE four-circle diffractometer and graphite monochnomated molybdenum $\mathrm{K} \boldsymbol{\alpha}$ radiation ($\lambda=0.71073 \AA$). The crystal was mounted on the tip of a glass fibre in an inert oil.

Space group $P 2(1) / n$ was chosen and later confirmed by successful structure solution. The structure was solved using xs [8] and refined by full-matrix least-squares with SHELxi-93 [9], minimizing the residuals for \boldsymbol{F}^{2}. No absorption correction was applied Hydrogen atoms were included in the model at their calculated positions. Anisorropic displacement parameters were assigned to all non-hydrogen atoms, isotropic displacement parameters were used for hydrogen atoms. A summary of crystal data, data collection and refinement is given in Table 1 .

Table 1
Crystal data, data collection and refinement of tridecametiny-1-arse-2,3,4,5,6,7,8-heptasilebicy[2,2.2]octane grown in a-beprease

empirical formala	$\mathrm{C}_{13} \mathrm{H}_{39} \mathrm{AsSi}_{7}$
formula weight (gmol^{-1})	466.98
crystal system	monnoctinic
space group	P2(1)/n
a (A)	16.327
b (${ }_{\text {A }}$)	9.807
c (A)	16.887
$\boldsymbol{\alpha}$ (deg)	90.00
$\boldsymbol{\beta}$ (deg)	10639
$\boldsymbol{\gamma}$ (deg)	90.00
volume (\dot{A}^{3})	2592.5(8)
Z	4
temperature (K)	889 (2)
wavelength (A)	0.71073
density (calc) $\left(\mathrm{gcm}^{-3}\right)$	1.196
absorption coeff. (mm^{-1})	1.63
$F(006)$	992
29 range (deg)	2.920022 .49
index ranges	$\begin{aligned} & -17 \leq h \leq 17 ;-10 \leq k \leq 10 ; \\ & -18 \leq 1 \leq 18 \end{aligned}$
refections coltected	4332
independeat reflections	3236[$\sim(\mathrm{im})=0.043$]
data	2676
parameters	190
goodness of fit on F^{2}	1.041
final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0422, w R_{2}=0.1214$
R indices (all data)	$R_{1}=0.0569, w R_{2}=0.1409$
largest difference peak (e \hat{A}^{-3})	0.49
largest difference hole ($e \dot{A}^{-3}$)	-0.53

Table 2
Fractional coordinases and equivalena isorropic parameters (A^{2}) ton the asymastric unit of tridecamethyl-1-arsa-2,3,4,5,6,7,8-hepasailabicyclo[2.2.2]

Atom	$\boldsymbol{\pi}$	y	2	$U_{\text {+4 }}$
As	$0.09171(3)$	0.222446)	0.46699(3)	0.0183(3)
Si_{2}	$0.14047(9)$	0.31929(15)	$0.36021(9)$	$0.0155(4)$
Si_{3}	0.28469(9)	$0.38316(15)$	0.396*0(9)	0.0160(4)
Si_{4}	0.35866(10)	$0.26853(14)$	0.51643(9)	0.01474)
Si_{5}	0.31010(10)	0.3474(2)	0.62596 (9)	0.0187(4)
Si_{6}	$0.16056(10)$	$0.3596(2)$	0.58203(9)	0.0189(4)
Si_{7}	0.17388 (10)	0.02m21(15)	0.49381(9)	0.0188(4)
$\mathrm{Si}_{\mathbf{8}}$	0.31841(9)	$0.0397415)$	0.49583(9)	0.0156(4)
C21	$0.1182(4)$	0.1909(6)	0.2737(3)	0.0029 (13)
CO	0.0728(4)	0.4729(6)	0.3217(4)	$0.0271(15)$
C31	0.3348(4)	$0.3401(6)$	0.3110(4)	0.0309*15)
C32	0.2909(4)	0.5751(6)	0.4103(4)	0.0265(14)
C41	0.4776(4)	0.295946	0.5383(4)	0.02489(14)
C5I	0.3554(4)	0.5219(6)	0.657\%(4)	0.036(2)
C52	0.3461(4)	$0.2329(6)$	$0.7191(3)$	$0.030(2)$
C61	0.12774)	0.5424(6)	$0.5557(3)$	0.0299(14)
C62	$0.1165(4)$	$0.3072(7)$	$0.6693(4)$	$00133(2)$
C71	0.1709(4)	-0.0462(6)	0.5977(4)	$0.0305(15)$
C72	0.1161(4)	-0.1087(6)	0.4150(4)	0.0274(14)
$\mathrm{C81}$	0.3858(4)	-0.0700(6)	0.5813(4)	0.0297(E5)
C82	0.3343(4)	-0.0052(6)	0.3961(3)	$0.0229(13)$

$U_{\text {eq }}$ is defined as ose third of the trace of the onthogonalized $U_{i j}$ tensor.

Fig. 1. Modecular structure of tridecamethyl-1-arsa-2,3,4,5,6,7,8-heptasilabicyclo\{2.2.2]octane: (a) view perpendicular to the C_{3} axis; (b) view in the dimection of the C_{3} axis.

The space group $P 2(1) / n$ is centrosymmetric and characterized by a two-fold screw axis perpendicular to a glide plane. Therefore the unit cell comprises both enantiomers of tridecamethyl-1-arsa-2,3,4,5,6,7,8heptasila bicyclo\{2.2.2]octane. Two molecules of each enantioner are present in the unit cell.

The molecular structure of the cage and the numbering scheme are shown in Fig. 1. Fractional coordinates and equivalent isotropic thermal parameters for the asymmetric unit are given in Table 2, selected intramolecular angles, torsional angles and distances in Table 3. The estimated standard deviations in parentheses refer to the last digit.

Detailed crystallographic data have been deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK.

The structure of $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2}\right)_{3} \mathrm{As}$ is composed of three Si_{5} As six-membered rings that adopt a twisted boat confornation with mean torsion angles of

Trisle 3
Selecsed imamolecular distances (A) and angles (deg) for tride-camethyl-1-arsa-2,3,45.6,7,8-heprasilabicyclo[2.2.2]octane

AESi_{6}	2.369(2)	$\mathrm{Si}_{8} \mathrm{Si}_{7} \mathrm{As}$	116.49(7)
AsSi_{2}	$2.36512)$	$\mathrm{Si}_{5} \mathrm{Si}_{6} \mathrm{As}$	116.17(7)
AsSi_{7}	$2.365(2)$	$\mathrm{Si}_{4} \mathrm{Si}_{3} \mathrm{Si}_{2}$	109.43(8)
$\mathrm{Si}_{4} \mathrm{Si}_{3}$	$2.337(2)$	$\mathrm{Si}_{4} \mathrm{Si}_{5} \mathrm{Si}_{6}$	108.80(8)
$\mathrm{Si}_{4} \mathrm{Si}_{5}$	$2335(2)$	$\mathrm{Si}_{4} \mathrm{Si}_{7} \mathrm{Si}_{7}$	108.53(8)
$\mathrm{Si}_{4} \mathrm{Si}_{8}$	2.337(2)	$\mathrm{Si}_{3} \mathrm{Si}_{4} \mathrm{Si}_{5}$	108.63(8)
$\mathrm{Si}_{2} \mathrm{Si}_{3}$	2.345(2)	$\mathrm{Si}_{3} \mathrm{Si}_{4} \mathrm{Si}_{8}$	107.05 (8)
$\mathrm{Si}_{6} \mathrm{Si}_{5}$	$2.346(2)$	$\mathrm{Si}_{3} \mathrm{Si}_{4} \mathrm{Si}_{8}$	106.07(8)
$\mathrm{Si}_{\mathrm{B}} \mathrm{Si}_{7}$	2.358:2)	$\mathrm{C} 21 \mathrm{Si}_{2} \mathrm{C} 22$	107.6(3)
		$\mathrm{C61Si}_{6} \mathrm{C62}$	107.3(3)
$\mathrm{Si}_{6} \mathrm{AESj}_{2}$	102.28(6)	$\mathrm{C7} 1 \mathrm{Si}_{7} \mathrm{C7} 2$	106.6(3)
$\mathrm{Si}_{6} \mathrm{AmSi}_{7}$	101.94(6)	$\mathrm{CliSi}_{3} \mathrm{C32}$	$107.2(3)$
$\mathrm{Si}_{2} \mathrm{AsSi}_{7}$	100.82(5)	$\mathrm{CSISi}_{5} \mathrm{C5} 2$	107.43)
$\mathrm{Si}_{3} \mathrm{Si}_{2} \mathrm{As}$	115.9\% ${ }^{(7)}$	$\mathrm{C8} 1 \mathrm{Si}_{1} \mathrm{C8} 2$	107.0(3)

40.57, 20.44, $-68.34,46.58,20.44$ and -64.12° (Fig. 1(a)). To a good approximation, the molecule belongs to point group C_{3} (Fig. 1(b)). In solution, the average symmetry is $\mathrm{C}_{3 \mathrm{v}}$ as deduced from the NMR spectra (see Section 4).

The average SiAs bond length ($\mathbf{2 3 6} .5 \mathrm{pm}$) compares well with the distances in largely unstrained SiAs compounds such as $\mathrm{K}_{2} \mathrm{SiAs}_{2}$ (237.0 pm [10]), $\mathrm{As}_{7}\left(\mathrm{SiMe}_{3}\right)_{3}$ (239.7 pm [11]) or $\mathrm{As}\left(\mathrm{SiH}_{3}\right)_{3}$ (235.2 pm [12]. For strained systems, values as large as 246 pm have been reported [13-15].

The mean SiSi distance of the bonds adjacent to the As atom (234.97 pm) is shorter by 1.34 pm than the mean distance to the apical Si atom (233.63 pm), reflecting the steric repulsions of the nearly staggered methyl groups (torsional angle C21Si2Si3C31 18.8°). All SiC bond distances are in the usual range, the average being 188.6(6) pm.

4. NMR spectroscopy

NMR experiments were performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $22^{\circ} \mathrm{C}$ on a Bruker 300 MSL spectrometer. ${ }^{29}$ Si spectra were recorded at 59.6 MHz using inept pulse sequences [16] with ${ }^{1} \mathrm{H}$ decoupling. The inept-INADEQUATE pulse sequence [17] was used for the determination of coupling constants. ${ }^{31} \mathrm{P}$ spectra were recorded at $121.50,{ }^{13} \mathrm{C}$ spectra at 75.47 MHz . Chemical shifts are reported relative to TMS ($\left.{ }^{29} \mathrm{Si}\right), 75 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ and TMS (${ }^{13} \mathrm{C}$). All chemical shifts (ppm) and coupling constants (Hz) are summarized in Table 4.

On the NMR timescale the two carbon atoms on a particular Si atom are equivalent. In solution, the cages thus exhibit the time averaged symmetry $\mathrm{C}_{3 \mathrm{v}}$. The corresponding large amplitude motion (essentially a tor-
Table 4
Chemical shifts [ppm] and coupling constants [Hz] of tridecamethyl-1-phospha- and tridecamethyl-1-arsa-2,3,4,5,6,7,8-heptasilabicyclo[2.2.2]octane

	8(Si)	$8\left({ }^{13} \mathrm{C}\right)$	8(${ }^{\text {S }}$ S)	$8\left({ }^{13} \mathrm{C}\right)$	b(${ }^{\circ} \mathrm{S}$)	$8\left({ }^{13} \mathrm{C}\right)$	$8\left({ }^{31} \mathrm{P}\right)$	${ }^{1} \mathrm{~J}$ (PSi)	${ }^{2} \mathrm{~J}\left(\mathrm{P}^{*} \mathrm{Si}\right)$	${ }^{1} \mathrm{~J}\left(\mathrm{Si}{ }^{*} \mathrm{Si}\right)$		${ }^{2} \mathrm{~J}(\mathrm{Si} \cdot \cdot \mathrm{Si})$
	-18.5	+2.6	-44.5	-2.5	-82.1	-14.7	-238.7	37.0	5.1	66.7	51.4	9.0
$\mathrm{As}\left(\mathrm{SiMe}_{2}{ }^{\text {SiMe }}{ }_{2}\right)_{3}^{*}$ - SiMe	- 19.7	+2.2	-44.3	-2.7	-81.0	-14.6						
$\left(\mathrm{PhMe}_{2} \mathrm{Si}^{+} \mathrm{SiMe}_{2}\right)_{3}{ }^{\circ} \mathrm{SiMe}{ }^{\text {b }}$	-17.4		-39.7		-71.9					71.9	50.0	6.1
$\left(\mathrm{TfMe}_{2} \mathrm{Si}^{\bullet} \cdot \mathrm{SiMe}_{2}\right)_{3}^{*} \cdot \mathrm{SiMe}^{\text {c }}$	45.6		-39.6		-75.4					77.4	53.3	7.9
$\left(\mathrm{ClMe}_{2} \mathrm{Si}^{-} \mathrm{SiMe}_{2}\right)_{3}^{\prime \prime} \mathrm{SiMe}^{\text {d }}$	26.8		-37.6		-75.9					78.5	52.5	6.5

sional vibration) is frozen in the solid state. The two minima of the associated double minimum potential characterize the two enamtioners.

5. Experimental details

5.1. Techniques

All operations were carried out under a nitrogen atmosphere, solvents were distilled from potassium. The C, H analyses were carried out on a Hereacus Micro U apparatus (tolerances $\pm 0.3 \% \mathrm{C}, \pm 02 \% \mathrm{H}$). Despite the addition of PbBO_{3} for complete fasion, the measured carbon content of ($\left.\mathrm{PhMe}_{2} \mathrm{SiSiMe}_{2}\right)_{3} \mathrm{SiMe}$ fell below the tolerance, presumably due to the formutican of silicon carbide.

5.2. Synthesis of ($\left.\mathrm{PhMe}_{2} \mathrm{SiSiMe}_{2}\right)_{3}$ SiMe

25.96 g (95.96 mmol) of $\mathrm{Me}_{2} \mathrm{PhSiSiPhMe}_{2}$ was dissolved in 200 ml of THF and 4.0 g of powdered lithium was added at $-10^{\circ} \mathrm{C}$. The solution turmed dark immediately and was stirred overnight at $-10^{\circ} \mathrm{C}$. Excess lithium was then filtered off and the solvent removed ia vacuo. The solid residue was suspended in 500 ml of heptane and a solution of $20 \mathrm{~g}(61.73 \mathrm{mmol})$ of $\mathrm{MeSi}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right)_{3}$ in 500 ml of heptane was added dropwise at $-20^{\circ} \mathrm{C}$. Afier completion, the reaction anixture was refluxed for 5 h . Subsequently, the salts and solvent were removed by filtration and distillation respectively, and the yellowish oily residue was fractionated in vacroo to give 17.3 g (45%) of a colourless liquid, b.p-a05 $=$ $230-240^{\circ} \mathrm{C}$.

Anal. Found: C, 58.76; H, 8.84. Calc.: C, 59.73; H, 8.73\%.

5.3. Synthesis of $\left(\mathrm{CF}_{3} \mathrm{O}_{2} \mathrm{SOSiMe}_{2} \mathrm{SiMe}_{2}\right)_{3} \mathrm{SiMe}$

10 g (16.04 mmol$)$ of $\left(\mathrm{PhMe}_{2} \mathrm{SiSiMe}_{2}\right)_{3} \mathrm{SiMe}$ was dissolved in 150 ml of pentane. At a temperature of $-40^{\circ} \mathrm{C}, 7.2 \mathrm{~g}$ (48.13 mmol) of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ was added quickly. After stiring for another 2 h at $-40^{\circ} \mathrm{C}$, the solvent was removed in vacuo. According to the ${ }^{29} \mathrm{Si}$ NMR spectra, the residue consists of pare $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Me}_{2} \mathrm{SiSiMe}_{2}\right)_{3} \mathrm{SiMe}$, which was used immediately for the preparation of $\left(\mathrm{CMM}_{2} \mathrm{SiSiMe}_{2}\right)_{3} \mathrm{SiMe}$.

5.4. Synthesis of $\left(\mathrm{ClMe}_{2} \mathrm{SiSiMe}_{2}\right)_{3}$ SiMe

5.3 g (15.49 mmol) of tris(trifluoromethancsulfonyloxyheptasilane was suspended in approximately 200 ml of $\mathrm{Et}_{2} \mathrm{O}$ and 5 g (18.3 mmol) of LiCl was added an $0^{\circ} \mathrm{C}$. After stirring overnight $\left(0^{\circ} \mathrm{C}\right)$, the solution was decanted from LiCl and the solvent removed in vacuo. The residue was dissolved in heprane and fir
tered After nemoval of the heptane, a semicrystalline solid of pure $\left(\mathrm{ClMe}_{2} \mathrm{SiSiMe}_{2}\right)_{3}$ SiMe was isolated. Yield 7.3 g (95%).

5.5. Synthesis of $\mathrm{P}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2}\right)_{3} \mathrm{SiMe}$

0.37 g (12.04 mmol) of white phosphorus was suspended in 50 ml of dimethoxyethane (DME) and 1.08 g (36.11 mmol) of sodiun potassium alloy ($4: 3$) was asded. After refluxing for $12 \mathrm{~h}, 6.0 \mathrm{~g}$ (12.04 mmol) of $\left(\mathrm{CMM}_{2} \mathrm{SiSiMe}_{2}\right)_{3} \mathrm{SiMe}$ in 50 ml of DME was added dropwise. The reaction mixture was refluxed for another 18h. The salts were then filtered by suction and the solvent removed in vacuo. 25 ml of heptane was added and the remaining salts were removed by filtration. Crystallization at $-70^{\circ} \mathrm{C}$ yields 2.42 g (48%) of pure $\mathrm{P}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2}\right)_{3} \mathrm{SiMe}$ as colourless crystals.

Anal. Fonnd: C, 36.25; H, 9.27. Calc.: C, 36.91; H, 9.29%.

5.6. Synthesis of $\mathrm{As}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2}\right)_{3} \mathrm{SiMe}$

0.9 g (12.04 mmol) of powdered arsenic was susperded in 50 ml of DME and 1.08 g (36.11 mmol) of sodium potassium alloy (4:3) was added. The reaction mixture was refluxed for two days. Three times per day, the mixture was activated using an ultrasonic bath. After this time, $6.0 \mathrm{~g} \quad(12.04 \mathrm{mmol})$ of ($\left.\mathrm{ClMe}_{2} \mathrm{SiSiMe}_{2}\right)_{3}$ SiMe dissolved in 50 ml of DME was added dropwise without interrupting the reflux. The refluxing was carried on for 12 h , followed by a removal of the salts by filtration and an evaporation of the solvent. Again, 25 ml of beptane was added and the remaining salts were separated by filtration. Crystallization at $-70^{\circ} \mathrm{C}$ yields $1.7 \mathrm{~g}(30 \%)$ of yellowish crystals of $\mathrm{As}\left(\mathrm{SiMe}_{2} \mathrm{SiMe}_{2}\right)_{3} \mathrm{SiMe}$.

Acknowledgements

The authors thank the Fonds zur Förderung der wissenschaftichen Forschung, Vienna for financial support through Project No. P 8204-CHE.

Keferences

[1] R. West and A. Indriksons, J. Am. Chem. Soc., 94 (1972) 6110.
[2] M. Ishikawa, M. Watanabe, J. Iyoda, H. Ikeda and M, Kumada, Organometallics, I (1982) 317.
[3] E. Hengge and R. Janoschek, Chem. Rev., 95 (1995) 1495.
[4] K. Hassler, J. Organomet. Chem., 246 (1983) C31.
[5] S. Seidl and K. Hassler, J. Organomet. Chem., 347 (1988) 27.
[6] M. Dräger and B. Mathiasch, Angew. Chem., 93 (1981) 1079; Angew. Chem., Int. Ed. Engl., 93 (1981) 1029.
[7] K. Hassler, Monatsh. Chem., /I7 (1986) 613.
[8] SHexMt 4.1, Siemens Crystallographic Research System, 1990.
[9] G.M. Sheldrick, shelxi-93, Pragram for Crysial Structure Refinement, University of Göttingen. 1993.
[10] W.M. Hurng, E.S. P eerson and J.D. Carlett, Inorg. Chem, 28 (1989) 4177.
[1] W. Hönle, J. Wolf and H.G. von Schnering, Z Naturforsch., $43 b$ (1988) 219.
[12] B. Beagley, A.G.E. Robiette and G.M. Sheldrick, Chem. Commur, (1967) 601.
[13] R.P. Tan, N.M. Comerlato, D.R. Powell and R. West, Angew. Chem. 104 (1992) 1251; Angew. Chem., Inr. Ed. Engl., 104 (1992) 1217.
[14] RL. Wells, A.T. McPhail and A. Alvanipour, Polyhedron, I/ (1992) 839.
[15] M. Drie日, R. Janoschek and H. Pritzkow, Angew. Chem., 104 (1992) 449; Angew. Chem., Int. Ed. Engl., 104 (1992) 460.
[16] G.A. Momis and R. Freeman, J. Am. Chem. Soc., 101 (1979) 760.
[17] O.W. Sorensen, R. Freeman, T. Frenkiel and R. Schuck, J. Magn. Reson., 46 (1982) 180.

[^0]: ${ }^{\text {• }}$ Correspording author.

